Editorial: Global Change, Clonal Growth, and Biological Invasions by Plants
نویسندگان
چکیده
Global changes in climate, land use, nutrient availability, acidity, populations of harvested or undesired species, and concentrations of toxins are now widely evident. Their ecological and evolutionary consequences are likely to be great but are often hard to identify or anticipate because of the multiple interactions that shape most ecological systems. One potentially important set of interactions involves the properties of clonal growth in plants. Clonal growth is common in plants and in ecosystems around the world and appears to be associated with the invasiveness of introduced plant species. Emergent clonal traits such as resource sharing and signaling between connected plants within clones, selective positioning of plants during clonal growth, stores of energy or nutrients that can be reallocated between connected plants, meristem banks that can be initiated in response to clonal integration, and tradeoffs between clonal and sexual reproduction might contribute to plant invasiveness and community invasibility, and global change may affect the expression, fitness effects, and evolution of these traits. This research topic assembles articles that deal explicitly with interactions between clonal growth and plant invasion or global change, and additional papers that advance understanding of aspects of clonal growth likely to affect invasion or response to global change. Four papers consider the evolution of clonality in plants. Epigenetic variation may provide an alternative means of adaptation to changing environments and play a key role during the invasion of some introduced clonal plants that cannot successfully reproduce sexually in the invaded range. In a forum paper, Dodd and Douhovnikoff propose how epigenetic variation may potentially enable clonal plants to adjust to changes in means and extremes of climate. Castro et al. report that plants of Oxalis pes-caprae from the native range show higher sexual fitness, while those from the invasive range have higher asexual fitness, suggesting that evolution has favored asexual over sexual reproduction during invasion. Roiloa et al. compare a different suite of clonal growth properties in Carpobrotus edulis from the native range in South Africa and the invaded range in Spain and Portugal. Plants from different ranges did not differ in degree of division of labor (i.e., specialization to acquire and share locally abundant resources), but the beneficial effect of clonal integration on the dry mass of apical ramets was higher in the introduced populations, suggesting that this clonal trait may have been selected for in the invaded range. Holmes et al. suggest that local adaptation …
منابع مشابه
Clonal integration facilitates the colonization of drought environments by plant invaders
Biological invasion represents one of the main threats for biodiversity conservation at the global scale. Identifying the mechanisms underlying the process of biological invasions is a crucial objective in the prediction of scenarios of future invasions and the mitigation of their impacts. In this sense, some plant attributes might better explain the success of invasive plant species than other...
متن کاملGlobal trade will accelerate plant invasions in emerging economies under climate change.
Trade plays a key role in the spread of alien species and has arguably contributed to the recent enormous acceleration of biological invasions, thus homogenizing biotas worldwide. Combining data on 60-year trends of bilateral trade, as well as on biodiversity and climate, we modeled the global spread of plant species among 147 countries. The model results were compared with a recently compiled ...
متن کاملAlien species in a warmer world: risks and opportunities.
Climate change and biological invasions are key processes affecting global biodiversity, yet their effects have usually been considered separately. Here, we emphasise that global warming has enabled alien species to expand into regions in which they previously could not survive and reproduce. Based on a review of climate-mediated biological invasions of plants, invertebrates, fishes and birds, ...
متن کاملBiological invaders in a greenhouse world: will elevated CO2 fuel plant invasions?
www.frontiersinecology.org © The Ecological Society of America I the 1930s, the US Soil Conservation Service grew 85 million kudzu (Pueraria lobata) seedlings and encouraged farmers to plant them to control soil erosion. By 1950, kudzu had escaped cultivation and was creeping across the American landscape at about 0.25 m per day. The plant began enshrouding trees and native vegetation across th...
متن کاملDivision of Labor Brings Greater Benefits to Clones of Carpobrotus edulis in the Non-native Range: Evidence for Rapid Adaptive Evolution
Why some species become invasive while others do not is a central research request in biological invasions. Clonality has been suggested as an attribute that could contribute to plant invasiveness. Division of labor is an important advantage of clonal growth, and it seems reasonable to anticipate that clonal plants may intensify this clonal attribute in an invaded range because of positive sele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016